Impact of non-uniform surface magnetic fields on stellar winds
نویسنده
چکیده
Observations of active stars reveal highly non-uniform surface distributions of magnetic flux. Theoretical models considering magnetised stellar winds however often presume uniform surface magnetic fields, characterised by a single magnetic field strength. The present work investigates the impact of non-uniform surface magnetic field distributions on the stellar mass and angular momentum loss rates as well as on the effective Alfvénic radius of the wind. Assuming an axial symmetric and polytropic magnetised wind, the approach of Weber & Davis (1967) is extended to non-equatorial latitudes to quantify the impact of latitude-dependent magnetic field distributions over a large range of stellar rotation rates and thermal wind properties. Motivated by recent observational results, the analytically prescribed field patterns are dominated by magnetic flux concentrations at intermediate and high latitudes. The global stellar mass loss rates are found to be rather insensitive to non-uniformities of the surface magnetic field. Depending on the non-uniformity of the field distribution, the angular momentum loss rates deviate in contrast at all rotation rates between −60% and 10% from the Weber & Davis-values, and the effective Alfvénic radii up to about ±25%. These large variations albeit equal amounts of total magnetic flux indicate that a classification of stellar surface magnetic fields through a single field strength is insufficient, and that their non-uniformity has to be taken into account. The consequences for applications involving magnetised stellar winds are discussed in view of the rotational evolution of solar-like stars and of the observational determination of their mass loss rates using the terminal velocity and ram pressure of the wind. For rapidly rotating stars the latitudinal variation of the wind ram pressure is found to exceed, depending on the actual field distribution on the stellar surface, over two orders of magnitude. The assumption of a spherical symmetric wind geometry may therefore lead to a significant overor underestimation of the stellar mass loss rate.
منابع مشابه
The Effect of Rotational Gravity Darkening on Magnetically Torqued Be Star Disks
In the magnetically torqued disk (MTD) model for hot star disks, as proposed and formulated by Cassinelli et al. (2002), stellar wind mass loss was taken to be uniform over the stellar surface. Here account is taken of the fact that as stellar spin rate So (= √ ΩoR 3/GM) is increased, and the stellar equator is gravity darkened, the equatorial mass flux and terminal speed are reduced, compared ...
متن کاملSome Observational Aspects of R Coronae Borealis Stars
Some of the observational aspects related to the evolutionary status and dust production in R Cor Bor stars are discussed. Recent work regarding the surface abundances, stellar winds and evidence for dust production in these high luminosty hydrogen deficient stars are also reviewed. Possibility of the stellar winds being maintained by surface magnetic fields is also considered.
متن کاملMagnetic fields, winds and X-rays of massive stars in the Orion Nebula Cluster
In massive stars, magnetic fields are thought to confine the outflowing radiativelydriven wind, resulting in X-ray emission that is harder, more variable and more efficient than that produced by instability-generated shocks in non-magnetic winds. Although magnetic confinement of stellar winds has been shown to strongly modify the mass-loss and X-ray characteristics of massive OB stars, we lack ...
متن کاملEffect of slip and variable thermal boundary conditions on hydromagnetic mixed convection flow and heat transfer from a non-linearly stretching surface
The effect of partial slip and temperature dependent fluid properties on the MHD mixed convection flow from a heated, non-linearly stretching surface in the presence of radiation and non-uniform internal heat generation/absorption is investigated. The velocity of the stretching surface was assumed to vary according to power-law form. Thermal transport is analyzed for two types of non-isothermal...
متن کاملMagnetic fields, winds and X-rays of massive stars: A spectropolarimetric survey of the Orion cluster
In massive stars, magnetic fields are thought to confine the outflowing radiatively-driven wind, resulting in X-ray emission that is harder, more variable and more efficient than that produced by instability-generated shocks in non-magnetic winds. Although magnetic confinement of stellar winds has been shown to strongly modify the mass-loss and X-ray characteristics of massive OB stars, we lack...
متن کامل